skip to main content


Search for: All records

Creators/Authors contains: "Cottle, John M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Early Jurassic Butcher Ridge Igneous Complex (BRIC) in the Transantarctic Mountains contains abundant and variably hydrated silicic glass which has the potential to preserve a rich paleoclimate record. Here we present Fourier Transform Infrared Spectroscopic data that indicates BRIC glasses contain up to ~8 wt.% molecular water (H2Om), and low (<0.8 wt.%) hydroxyl (OH) component, interpreted as evidence for secondary hydration by meteoric water. BRIC glasses contain the most depleted hydrogen isotopes yet measured in terrestrial rocks, down to δD = −325 ‰. In situ40Ar/39Ar geochronology of hydrated glasses with ultra-depleted δD values yield ages from 105 Ma to 72 Ma with a peak at c. 91.4 Ma. Combined, these data suggest hydration of BRIC glasses by polar glacial ice and melt water during the Late Cretaceous, contradicting paleoclimate reconstructions of this period that suggest Antarctica was ice-free and part of a global hot greenhouse.

     
    more » « less
  2. Chauvel, Catherine (Ed.)
    In situ apatite U-Pb petrochronology and Sr-Nd isotope geochemistry requires well-characterized and matrix-matched references materials (RMs), yet only a few suitable apatite RMs are currently available. To ameliorate this issue, we determined the U-Pb, Sm-Nd, and Sr isotopic and elemental compositions of a suite of prospective apatite RMs using isotope dilution (ID) TIMS and laser ablation (LA) ICP-MS. The two RMs, from Morocco (MRC-1) and Brazil (BRZ-1), are cm-sized and available in significant quantities. The U-Pb ID-TIMS data yield an isochron age of 153.3 ± 0.2 Ma for MRC-1. This age is consistent with laser ablation split stream ICP-MS (LASS) analyses that produce an isochron age of 152.7 ± 0.6 Ma. The weighted mean of ID-TIMS analyses for 143Nd/144Nd analyses is 0.512677 ± 3, for 147Sm/144Nd is 0.10923 ± 9, and for 87Sr/86Sr is 0.707691 ± 2. The range and mean of TIMS Sm-Nd isotopic data are reproducible by LA-ICP-MS, but laser ablation Sr data are consistently offset towards more radiogenic values. For BRZ-1 apatite, ID-TIMS U-Pb analyses are dispersed, but a subset of the data yields a coherent age intercept of 2078 ± 13 Ma. The vast majority of LASS spot transects across the apatite produce an isochron that define a younger age of 2038 ± 14 Ma. We interpret this as incorporation of cryptic, younger altered domains within BRZ-1. Discordant U-Pb spot analyses are associated with chemically distinct cracks, likely a result of fluid infiltration. The weighted means of ID-TIMS analyses of BRZ-1 yield 143Nd/144Nd = 0.510989 ± 5, 147Sm/144Nd = 0.10152 ± 8, and 87Sr/86Sr = 0.709188 ± 3. The distribution of Nd isotopic compositions of this RM measured by LA-MC-ICP-MS analyses are comparable to TIMS analyses. By contrast, 87Sr/86Sr measurements by LA-ICP-MS are inaccurate and exhibit large uncertainties, but this RM can be useful for empirically correcting in situ 87Sr/86Sr measurements. The data indicate that MRC-1 apatite may serve well as a U-Pb, Sm-Nd, and Sr RM, whereas BRZ-1 apatite has the most potential as a Sm-Nd RM. These potential RMs provide new benchmarks for in situ apatite chemical analyses and inter-laboratory calibrations. 
    more » « less
  3. Abstract This study addresses the question of how and where arc magmas obtain their chemical and isotopic characteristics. The Wooley Creek batholith and Slinkard pluton are a tilted, mid- to upper-crustal part of a vertically extensive, late-Jurassic, arc-related magmatic system in the Klamath Mountains, northern California. The main stage of the system is divided into an older lower zone (c. 159 Ma) emplaced as multiple sheet-like bodies, a younger upper zone (c. 158–156 Ma), which is gradationally zoned upward from mafic tonalite to granite, and a complex central zone, which represents the transition between the lower and upper zones. Xenoliths are common and locally abundant in the lower and central zones and preserve a ghost stratigraphy of the three host terranes. Bulk-rock Nd isotope data along with ages and Hf and oxygen isotope data on zircons were used to assess the location and timing of differentiation and assimilation. Xenoliths display a wide range of εNd (whole-rock) and εHf (zircon), ranges that correlate with rocks in the host terranes. Among individual pluton samples, zircon Hf and oxygen isotope data display ranges too large to represent uniform magma compositions, and very few data are consistent with uncontaminated mantle-derived magma. In addition, zoning of Zr and Hf in augite and hornblende indicates that zircon crystallized at temperatures near or below 800 °C; these temperatures are lower than emplacement temperatures. Therefore, the diversity of zircon isotope compositions reflects in situ crystallization from heterogeneous magmas. On the basis of these and published data, the system is interpreted to reflect initial MASH-zone differentiation, which resulted in elevated δ18O and lowered εHf in the magmas prior to zircon crystallization. Further differentiation, and particularly assimilation–fractional crystallization, occurred at the level of emplacement on a piecemeal (local) basis as individual magma batches interacted with partial melts from host-rock xenoliths. This piecemeal assimilation was accompanied by zircon crystallization, resulting in the heterogeneous isotopic signatures. Magmatism ended with late-stage emplacement of isotopically evolved granitic magmas (c. 156 Ma) whose compositions primarily reflect reworking of the deep-crustal MASH environment. 
    more » « less
  4. Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this connection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and transient melt extraction events. Here, U-Pb zircon petrochronology and 40 Ar/ 39 Ar thermochronology constrain silicic melt segregation and residual cumulate formation in a ~7 to 6 Ma, shallow (3 to 7 km depth) Andean pluton. Thermo-petrological simulations linked to a zircon saturation model map spatiotemporal melt flux distributions. Our findings suggest that ~50 km 3 of rhyolitic melt was extracted in ~130 ka, transient pluton assembly that indicates the thermal viability of advanced magma differentiation in the upper crust. 
    more » « less
  5. Abstract

    Lavas erupted at hotspot volcanoes provide evidence of mantle heterogeneity. Samoan Island lavas with high87Sr/86Sr (>0.706) typify a mantle source incorporating ancient subducted sediments. To further characterize this source, we target a single high87Sr/86Sr lava from Savai’i Island, Samoa for detailed analyses of87Sr/86Sr and143Nd/144Nd isotopes and major and trace elements on individual magmatic clinopyroxenes. We show the clinopyroxenes exhibit a remarkable range of87Sr/86Sr—including the highest observed in an oceanic hotspot lava—encompassing ~30% of the oceanic mantle’s total variability. These new isotopic data, data from other Samoan lavas, and magma mixing calculations are consistent with clinopyroxene87Sr/86Sr variability resulting from magma mixing between a high silica, high87Sr/86Sr (up to 0.7316) magma, and a low silica, low87Sr/86Sr magma. Results provide insight into the composition of magmas derived from a sediment-infiltrated mantle source and document the fate of sediment recycled into Earth’s mantle.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Coupled U‐Pb and trace‐element analyses of accessory phases in crustal xenoliths from the Late Devonian Udachnaya kimberlite (Siberian craton, Russia) are used to constrain Moho temperature and crustal heat production at the time of kimberlite eruption. Rutile and apatite in lower‐crustal garnet granulites record U‐Pb dates that extend from 1.8 Ga to 360 Ma (timing of kimberlite eruption). This contrasts with upper‐crustal tonalites and amphibolites that contain solely Paleoproterozoic apatite. Depth profiling of rutile from the lower‐crustal xenoliths show that U‐Pb dates increase gradually from rim to core over μm‐scale distances, with slower‐diffusing elements (e.g., Al) increasing in concentration across similar length‐scales. The U‐Pb and trace element gradients in rutile are incompatible with partial Pb loss during slow cooling, but are consistent with neocrystallization and re‐heating of the lower crust for <1 Myr prior to eruption. Because Paleoproterozoic rutile and apatite dates are preserved, we infer that long‐term ambient lower‐crustal temperatures before this thermal perturbation were cooler than the Pb closure temperature of rutile and probably apatite (<400°C). The lower‐crustal temperature bounds from these data are consistent with pressure‐temperature arrays of Udachnaya peridotite xenoliths that suggest relatively cool geothermal gradients, signifying that the mantle xenoliths accurately capture the thermal state of the lithosphere prior to eruption. Combined, the xenolith data imply low crustal heat production for the Siberian craton (∼0.3 μW/m3). Nevertheless, such values produce surface heat flow values of 20–40 mW/m2, higher than measured around Udachnaya (average 19 mW/m2), suggesting that the surface heat flow measurements are inaccurate.

     
    more » « less
  8. Abstract

    The Tibetan plateau is host to numerous ~N‐S striking graben that have accommodated E‐W directed extension. The development of these structures has been interpreted to reflect a variety of different geological processes including plateau collapse, oroclinal bending or mid‐to‐lower crustal flow. New40Ar/39Ar thermochronology and quartzc‐axis data from the Thakkhola graben of west‐central Nepal show that E‐W extension was ongoing at least locally by the early Miocene (ca. 17 Ma). Our new, and previously published chronologic information on the initiation of graben across the orogen shows that they typically developed immediately after cessation of the South Tibetan detachment system, a structural network that facilitated differential southward movement of the upper and middle crust. We interpret this fundamental switch in orogen kinematics to reflect recoupling of the middle and upper Himalayan crust such that the subsequent widespread flow of the mid‐to‐lower crust out of the system to the east forced brittle accommodation in the upper crust.

     
    more » « less